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initial task state based on Euclidean
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Abstract
Robots need the ability to tackle problems of movement generalization in variable task state and complex environment.
Dynamical movement primitives can effectively endow robots with humanoid characteristics. However, when the initial state
of tasks changes, the generalized trajectories by dynamical movement primitives cannot retain shape features of demon-
stration, resulting in the loss of imitation quality. In this article, a modified dynamical movement primitives based on Euclidean
transformation is proposed to solve this problem. It transforms the initial task state to a virtual situation similar to the
demonstration and then utilizes the dynamical movement primitive method to realize movement generalization. Finally, it
reverses the movement back to the real situation. Besides, the information of obstacles is added to Euclidean transformation
based dynamical movement primitives framework to endow robots with the ability of obstacle avoidance. The normalized
root-mean-square error is proposed as the criterion to evaluate the imitation similarity. The feasibility of this method is
verified through writing letters, wiping whiteboard in two-dimensional task, and stirring mixture in three-dimensional task.
The results show that the similarity of movement imitation in the proposed method is higher than dynamical movement
primitives when the initial state changes. Meanwhile, Euclidean transformation based dynamical movement primitives can still
greatly retain shape feature of demonstration while avoiding obstacles in an unstructured environment.
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Introduction

In recent years, traditional robot programming algorithms

with poor generalization performance, low programming

efficiency, and weak human–robot interaction cannot meet

the need of effectively intelligent robots learning.1 How-

ever, intelligent control algorithms based on learning from

demonstration improve the generalization ability of manip-

ulation skills, with robustness against disturbance and rel-

atively easier interaction process. These algorithms

improve the efficiency of skill learning and endow robots

with humanoid characteristics.

This article focuses on the problem of improving the

performance of imitation and generalization from human

demonstration in any relationship between robot state and
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task state. The methods of learning from demonstration can

be mainly classified into two categories.

One is to construct probability model of demonstration

characteristics based on statistical methods. Calinon et al.2–6

proposed a Gaussian mixture model–Gaussian mixture

regression (GMM-GMR) learning framework to extract the

feature distribution of trajectories in task space as well as

manipulator joint space and applied the learned model to

new task scenarios. Paraschos et al.7–10 proposed the prob-

abilistic movement primitives, which introduced linear

weighted basis functions using Gaussian to construct the

probabilistic model. However, these statistics-based meth-

ods usually require a large number of demonstration samples

to train a good probability model, obviously increasing the

burden of demonstrators and the generalized movement is

greatly affected by the coverage of human demonstration,

which limits the extrapolation ability of robot.

The second kind of method is based on dynamic models

of demonstration. Ijspeert et al.11–13 proposed the method

of dynamical movement primitives (DMPs), which can

realize the generalization to different goals through single

demonstration. This method is derived from the attractor

behavior of autonomous nonlinear dynamic system and it

can learn nonlinear movement features with good general-

ization and versatility. In recent years, a variety of optimi-

zation studies on this method have been emerging. Deniša

et al.14,15 used Gaussian process regression and16 used

GMM to construct regression model of task parameters

as well as weight parameters of coupling force, which

makes the generalization ability of DMPs more flexible.

However, these methods ignore the poor generalization

ability of DMPs in complex movement when the initial

task states change. There are also some strategies introdu-

cing neural network to increase the performance of imita-

tion. In some application scenarios, Su et al.17 combine the

GMM-GMR method with DMPs to generalize the surgical

movements in the open surgery, which ensures the accu-

racy of the action, and model the uncertainty of multiple

sets of demonstrating data. For increasing the regression

accuracy of the imitation human motion, Su et al.18 pro-

posed an incremental learning framework based on the

deep convolutional neural network approach for fast online

human-like motion learning. But it needs a lot of data sets

to construct the neural network. Qi et al.19 proposed adap-

tive human activity recognition real-time monitoring sys-

tem to classify and identify human motions in dynamic

situations.

In general, DMPs method has the following problems:

1. While the initial state is close to or coincides with

the goal state, the movement cannot be generated

or it will generate extreme acceleration which will

lead to exceed the physical limit of robots.

Researches have proposed a variety of methods to solve

this problem. For instance, Hoffmann et al.20 proposed Bio-

DMPs method by designing improved DMPs in acceleration

domain. Kulvicius et al.21 introduced another exponential

decay system to replace the goal term in the second-order

dynamical system.

2. When the relative state between initial and goal

states changes such as in different relative quad-

rants, the generalized movement cannot retain the

characteristics of demonstration.

To this problem, Caccavale et al.22 considered the linear

part of the DMP and neglected the forcing terms to prevent

the problem of the excessive magnification of trajectories

generated from different initial states. Gräve and Behnke23

utilized the linear transformation method to retain the orig-

inal movement characteristics to segment and keep the

relative quadrants of each segment same as the demonstra-

tion. Zhou et al.24 introduced the follower and leader idea

using local coordinate transformation to generate the move-

ment in the varying coordinate system and introduced the

concept of follower and leader to solve the goal tracking

problem. However, our work focuses on solving the prob-

lem raised by the global change of the initial state. Forte

et al.25 constructed DMPs model in the joint space of robot

in the very initial state reaching task; however, this strategy

needs plenty of demonstrations to construct the movement

primitives and cannot utilize the advantage of DMPs.

Although its generalization in joint space can avoid the

coordinates’ system problems, its planning is limited by

the joint limit which will raise the constraint planning prob-

lem of DMPs. Calinon5 proposed multiple coordinate

fusion systems, where they constructed the distribution of

demonstrations using multiple coordinate systems and seg-

mented the imitated movement. In this article, we introduce

the single coordinate system to represent only one demon-

stration, which keeps the consistency and improves the

efficiency of the imitation. Cohen and Berman26 have some

similar parts of our method but they did not consider the

relation of different dimensions. Meanwhile, their method

did not take obstacles perturbation into account. Khansari-

Zadeh and Billard27 ensured the global asymptotic stability

of the generalized movement.

In this article, we propose a Euclidean transformation

based DMPs (ET-DMPs) method to solve the second prob-

lem. We summarize the innovation in our work in the fol-

lowing three points:

1. We extract the relationship between current robot

state and demonstration, which is used for the trans-

formation between the actual and virtual situation.

2. The original DMPs are optimized by introducing

the relationship obtained from demonstration,

which is the proposed ET-DMPs method. It trans-

forms and reverses the generalized movement using

the relationship, which effectively guarantees the

imitation and generalization performance of robots.
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3. In simulation and experiment, the proposed method

is compared with DMPs by using the similarity

indicators nRSME to highlight the advantages of

ET-DMPs. Besides, single and multiple obstacles

information through Euclidean transformation are

also added to the framework.

The organization of this article is divided into four

sections: The second section describes the principle of

DMPs. The third section introduces the ET-DMPs method

and the extension for obstacle avoidance. The fourth sec-

tion verifies the validity of ET-DMPs through simulation

and experiment. The fifth section discusses the limitation

of our method. The sixth section presents the conclusion

of this article.

Dynamical movement primitives

DMPs have a good generalization performance in both

discrete and periodic movement. Combining these two

kinds of motion deliberately could generate more complex

movement. It is originally a method applied to the repre-

sentation of one-dimensional movement. When extended to

multidimensional space, the coupling relation is established

through the phase variables in canonical system and then

we could get the multidimensional synchronous movement,

although each dimension is independent.

DMPs are derived from the spring-damping dynamic

attractor system combined with the nonlinear coupling

force. Equations (1) and (2) give the expression of this

system as follows

t _v ¼ Kðg� xÞ � Dvþ ðg� x0ÞfðsÞ (1)

t _x ¼ v (2)

where K is the spring stiffness coefficient, D is the damping

constant, t represents a constant scale of the movement

duration, x; v; _v is the current position, velocity, and accel-

eration of the system, x0 represents the initial state of sys-

tem, g is the goal state and x will converge toward g

monotonically with appropriate values of K and D, and s

is a phase term which drives the system to going on. f is a

coupling forcing term that can be fitted by linear weighted

basis function. The expression of forcing term is defined as

follows

fðsÞ ¼

X
i
 iðsÞv iX
i
 iðsÞ

s (3)

where term  i is the basic function to fit the coupling for-

cing term typically selecting Gaussian kernel function to

get a good performance as shown in the following equation

 iðsÞ ¼ exp � 1

2s2
i

s� cið Þ2
� �

(4)

The function of phase s is to eliminate the dependence

on time, and the definition of it refers to in the following

equation

t _s ¼ �as (5)

where a is a constant and s can express the progress of a task

with the initial value set to 1. It can be derived from Eq. (5)

that as the movement going on, the phase s approaches to 0,

and the influence of the coupling force term will gradually

weaken to guarantee that the system is approximate to a

linear spring-damping system, so it can converge to the goal

point in the end. In addition, the duration of the movement

can be adjusted by setting the constant t.

The coupling force term f is the key factor to extract the

characteristics from demonstration. Through the weighted

basis functions, f corresponding to different demonstra-

tions will be obtained. Each feature function corresponds

to different groups of weight parameter !i, which could be

learned through imitating from demonstration. Firstly, the

trajectory information fxðtÞ; vðtÞ; _vðtÞgD
t¼0���T is recorded

from human demonstration. Equation (1) is then trans-

formed into Eq. (6) and the coupling term of the target

f target can be computed using the information from demon-

stration, while the corresponding phase variable at each

timesteps is obtained by Eq. (5). The information of the

essential feature is represented as ff target; sg, and the

weight parameters !i corresponding to the f target are

obtained by using locally weighted regression (LWR)28

based on Eq. (3)

f target ¼
t _v�Kðg� xÞ þ Dv

g� x0

(6)

According to the above introduction, DMPs have a good

performance when goal changes. For example, when the

relative state between initial and goal states changes, as

shown in Figure 1, the generalized trajectory could still

retain the characteristic of the demonstration. However,

when the initial state changes, the beginning parts of the

generalized trajectory lose the demonstration characteristic

as the green-dotted line circle. Meanwhile in some tasks,

we need to adapt the different feed directions. For example,

we need to imitate the movement just like three-

dimensional (3D) space part in Figure 1, which may appear

when stirring mixture. But DMPs encoded the movement

of different dimensions independently, which loses the

movement relations of the interdependent dimensions, so

it is hard to adapt the feed direction of movement.

There is another strategy for representing the movement,

which employs the polar or spherical coordinate system.

However, another problem will arise when angles are intro-

duced into the position representation, namely that the

angles change abruptly when the position crosses the

boundary 2p. It is difficult to distinguish between 0 and

2p. In addition, it also has the same problem as Figure 1

that shows in one-dimensional (1D) space.
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Euclidean transformation based DMPs

In this section, ET-DMPs are introduced and obstacle infor-

mation is added to the ET-DMPs in an attempt to verify the

robustness of the method under the interference of obsta-

cles. The overall framework of ET-DMPs proposed in this

article is shown in Figure 2 and the algorithm process of

ET-DMPs is illustrated in Algorithm 1. The yellow area

represents ET-DMPs, and the blue area represents Eucli-

dean Transformation, which can be clearly seen that this

framework can still inherit the advantage of DMPs. The

region within the dash-dotted line can be replaced by any

other optimized DMPs methods (which denoted by DMPþ)

such as Bio-DMPs20 and task-specific DMPs,29 without

affecting the performance of the framework.

The principle of ET-DMPs

The feature information obtained from demonstration in

the global coordinate system includes , where T represents

the total duration of the movement, the initial state and

goal state, respectively, correspond to the trajectory when

t ¼ 0 and t ¼ T . Firstly, the initial states are transformed

from global coordinate to the coordinate of the goal, as

shown in Figure 3, in 1D space; we transform the new

initial states to be consistent with the initial state of

demonstration.

For two-dimensional (2D) space, IC
1*IC

4 are four differ-

ent initial states in the local coordinate system. To solve the

problem of poor imitation ability due to the initial state in

different quadrants, we rotate initial states to the same line

as the initial demonstration represented as I 1
0*I 4

0. We call

them virtual states in the following article.

For the generalization in 3D space, we propose two

transformation modes. Mode 1 is similar to the method in

2D space but using Rodrigues rotation formula30 to rotate

the initial states to the same line as the demonstration, and

in mode 2 the task initial states are rotated to a plane which

is constructed by the vectors of initial demonstration and

the axis of the independent dimension (in Figure 3 this

dimension is z). This independent axis is not involved in

Demonstration Goal Changed Initial ChangedDemonstration Goal Changed Initial Changed

1D Space 2D Space 3D Space

Demonstration Goal Changed Initial Changed

1D Space 2D Space 3D Space

Demonstration Goal Changed Initial Changed

1D Space 2D Space 3D Space

Demonstration Goal Changed Initial Changed

1D Space 2D Space 3D Space

Figure 1. Generalized trajectories of DMPs in three spaces in the case of varying initial and goal states, respectively. DMP: dynamical
movement primitives.

Algorithm 1. Process of our framework.

ffi
Get human demonstration data ft; xðtÞ; vðtÞ; _
ffi Demonstration Sampling:

vðtÞgD
t¼0���T

fflffl Euclidean Transformation Dynamical Movement Primitives (ET-DMPs)
Input: Demonstration Data ft; xðtÞ; vðtÞ; _vðtÞgD

t¼0���T and Current Initial State xC
0

Output: Generalized Trajectory fxðsÞ; vðsÞ; _vðsÞgG
s¼1���0

(*Relation between s and t reference to Eq.(5)
1: Encoded demonstration data by DMPs
2: Extract the relative state between initial and goal from the demonstration ID¼xD

0 � gD

3: Get current relative state between initial and goal IC¼xC
0 � gC

4: Euclidean Transform according to the relation between IC and ID

5: Generalize movement according to the Eq.(11) - Eq.(12)
6: Reverse the movement generalized in virtual situation according to the Eq.(13) - Eq.(14)
�� Control Robot to Follow the Generalized Movement
Input: Generalized Trajectory fxðsÞ; vðsÞ; _vðsÞgG

s¼1���0
Output: Robot Joint Velocity _q1 � � � _q6f g (using 6-dofs robot as manipulator)
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the rotation process but follows the generalization principle

of 1D space. In this mode, the 3D space problem converts

to a 1D and a 2D space generalization, respectively. Mode

1 is usually used when motions of three dimensions need

Euclidean Transformation according to the task state. If

task state has only impact on two dimensions, mode 2 will

be selected.

Actually, points in any quadrants can be switched into

the desired quadrant through Euclidean transformation. For

1D space, we change the initial states using scale factor n as

Eq. (7) shown, I is the initial state, I 0 is the virtual state

scaled from I using n, gC is the current goal state, and gD is

the demonstration goal state

I 0 ¼
sign IC � gC

� �
sign ID � gD

� � � n � IC � gD
� �

þ gC

n ¼ IC � gC

ID � gD

������
������

(7)
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Figure 3. Euclidean transformation in 1D, 2D, and 3D spaces (with two modes). 1D: one-dimensional; 2D: two-dimensional; 3D: three-
dimensional.
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Demonstration
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Figure 2. Flow diagram of ET-DMPs system. ET-DMPs: Euclidean transformation based dynamical movement primitives.
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Meanwhile, the mean transformation of the 2D space

and mode 2 of 3D space where we only use the planar

rotation is as follows

I0 ¼ �RðqÞ � I

�RðqÞ ¼
cosq �sinq

sinq cosq

" #
(8)

For mode 1 of 3D space, the Rodrigues rotation formula

is as follows

I0 ¼ cosq IC þ ð1� cosqÞ ðkICÞ k þ sinq k � IC (9)

where IC is the vector of current state and ID is the initial state

of demonstration. �RðqÞ is the planar rotation matrix and the

rotation axis k is the unit vector. The virtual state I 0 is obtained

through rotating IC by q and the rotation angle q is equal to the

angle between the initial position of generalization and that of

demonstration, corresponding to fq1; q2; q3; q4g in Figure 3

They are computed through the following equation

qi ¼ arccosð Ii
C � ID

Ii
Cj j ID
�� ��ÞIC

i 2 IC
1 *IC

4

� �
qi 2 q1*q4f g (10)

After above transformation, the movement is general-

ized in the virtual situation. The formulation of ET-DMPs

model is as follows

t _v0 ¼ KðgC � x0Þ � Dv0 þ ðgC � x0
0ÞfðsÞ (11)

x0
0 ¼ �RðqÞIC þ gC

IC ¼ xC
0 � gC

(12)

where x0; v0f g denotes the position and velocity of general-

ized movement in the virtual situation, respectively, and x0
0

is the virtual initial position. Then, by using Eqs (13) and

(14), the trajectory obtained from virtual situation is trans-

formed back to real situation, where x; vf g represents the

position and velocity in real situation. Finally, the execu-

table generalized trajectory is obtained and passed to the

manipulators

x ¼ �Rð�qÞðx0 � gCÞ þ gC (13)

v ¼ _x (14)

For quantifying the similarity of the imitation, we intro-

duce the similarity evaluation method, which computes the

root-mean-square error between the generalized and

demonstration trajectories after normalizing and rotating

them into the same similarity metric. Firstly, we rotate the

generalized trajectory by the angle computed from Eq. (10)

making sure that I and Idemo are on the same line, and we

define the rotated trajectories as D. Then we normalize the

demonstration and generalization trajectory using Eq. (15),

where Dx Dy, and Dz represent the position of the trajectory

along x, y, and z axes (if in 3D space we introduce the z axes

trajectory). We then compute the error using Eq. (16) to

evaluate the similarity of the trajectory

Dnormal ¼
D

max Dxj j; Dy

�� ��; Dzj j
� � (15)

Lerror ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXx;y;z
k

1

T

XT

i

Dk
normal�i � Dk

demo�i

� �2

 !2
vuut (16)

Obstacle avoidance method based on ET-DMPs

Besides imitating and generalizing in simple environment,

robots will also encounter complex environment in daily

life, such as scene with obstacles. Therefore, we add the

obstacle information to the ET-DMPs framework.

Obstacle avoidance in the DMPs. If obstacles exist in the task

environment, robots will need robust environmental adapt-

ability to avoid obstacles. The effect of obstacles is exactly

contrary to that of the attractor in DMPs. As an external

disturbance of the system, obstacles function as a repulsive

role during the movement. Similar to the principle of arti-

ficial potential field,31 the coupling term l x; vð Þ represent-

ing the repulsion force generated by obstacles is added to

Eq.(17), and this coupling term is the function of the cur-

rent speed as well as the relative position between the cur-

rent state and the obstacle

t _v0 ¼ Kðg� xÞ � Dvþ ðg� x0ÞfðsÞ þ lðx; vÞ (17)

Inspired by human obstacle avoidance behavior, Fajen

and Warren32 constructed a point obstacle avoidance

model, in which the differential equation is as Eq.(18),

where � is the steering angle which is decided by current

obstacle position and system state (position and velocity)

and the constants g and b affect the sensitivity to obstacle.

The schematic diagram is shown in Figure 4. To combine

this obstacle avoidance function with DMPs, the function

between the steering angle velocity and the acceleration of

current state l x; vð Þ is defined in Hoffmann et al.20

_� ¼ g�expð�b �j jÞ (18)

� ¼ cos�1 o� xð ÞT v

o� xj j � vj jð Þ

 !
(19)

_v ¼ Rv _� (20)

In Eq. (20), R is the rotational matrix representing the

modified direction rotated by p=2 while regarding

φ
O

X

φ
O

X

Figure 4. Illustration of obstacle avoidance.
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r¼ ðo� xÞ � v as the axis, and o is current obstacle posi-

tion. Then the modified velocity is determined by steering

angular velocity. It can be concluded that the coupling term

generated from the repulsion force of obstacles as Eq. (21)

shown affects the shape of the generalized trajectory

lðx; vÞ ¼ gRv�exp �b �j jð Þ (21)

Besides, in environment with multiple obstacles, the

coupling term of avoidance needs to contain the informa-

tion of multiple repulsion force. Therefore, l x; vð Þ turns

into the following form as Eq. (22) shown

lðx; vÞ ¼ g
X

i

Riv�iexpð�b �ij jÞ (22)

where �i ¼ cos�1 oi�xð ÞT v

oi�xj j vj j


 �
Euclidean transformation of obstacles. Combined with the

obstacle avoidance introduced in the section “Obstacle

avoidance in the DMPs” and Euclidean transformation

introduced in the section “The principle of Euclidean trans-

formation based DMPs,”, the position of obstacles can be

rotated by the same angle and direction as the initial state of

robots. The expression of obstacles after Euclidean trans-

formation is expressed as follows

oi
0 ¼ �Rðoi � gCÞ þ gC (23)

In the case of single obstacle and multiple obstacles, the

corresponding coupling terms after Euclidean transforma-

tion are modified as follows

l0 x 0; v 0ð Þ ¼ g0
X

i

Ri
0v0�i

0expð�b �i
0j jÞ (24)

Then the generalized obstacle avoidance trajectory

obtained in virtual state is restored to the real task through

inverse Euclidean transformation, after which the move-

ment is transferred to a robot.

However, the disturbance of obstacles can be ignored

when the robot enters the safe region. In the safe region, the

distance from current position to the goal is less than that to

the obstacle, thus the attraction of the goal is the main

driving force, as shown in the following equation

l0 x 0; v 0ð Þ ¼
g0
X

i

Ri
0v0�i

0expð�b �i
0j jÞ if joi � x 0j jj < jx 0 � gC

�� ��j
0 if joi � x 0j jj > jx 0 � gC

�� ��j
8<
: (25)

The function _� ¼ �expð�b �j jÞ is 0 for � ¼ 0, which

means the force is 0 when directly heading towards the

obstacle. Referring to Rai et al.,33 we add a new function

as Eq. (26) to the coupling term which forms a field of

repulsion away from the obstacle, where di represent the

current distance to the obstacles

l00 x 0; v 0ð Þ ¼
g00
X

i

Ri
0v0expð�kdiÞ if joi � x 0j jj < jx 0 � gC

�� ��j
0 if joi � x 0j jj > jx 0 � gC

�� ��j
8<
: (26)

l� ¼ l0 þ l00 (27)

Finally, the Lyapunov equation is cited to prove that

the movement still converges to the goal state even when

information of obstacles is transferred into the virtual situ-

ation. The goal state is assumed to be a fixed point

x0; v0ð Þ ¼ ðgC; 0Þ, to which the initial state in any position

will converge. The energy equation of spring-damping sys-

tem with unit mass _v0 ¼ KðgC � x0Þ � Dv 0 is used and then

the Lyapunov equation is as follows

V x 0; v 0ð Þ ¼ 1

2
ðgC � x 0ÞTKðgC � x 0Þ þ 1

2
v 0

T
v 0 (28)

To prove system convergence, it should be guaranteed

that _V x 0; v 0ð Þ < 0 as well as v 0 6¼ 0, and we get the follow-

ing deduction

_V ¼ rxV T _x0 þ rvV T _v0 ¼ �ðgC � x 0ÞTKv0 þ v 0T _v0

¼ �v 0TKðgC � x0Þ þ v 0TKðgC � x0Þ � v 0TDv0

þg0v 0TR0v0�0expð�b�0Þ þ g00v 0TR0v0expð�kdÞ

¼ �v 0
T

Dv0 < 0 (29)

where v 0TR0v 0 equals to 0 due to the rotation angle of the

rotation matrix R 0 is 90�. The above proves that DMPs can

converge to a fixed goal x 0; v 0; _v0ð Þ ¼ ðgC; 0; 0Þ even after

the initial state and obstacle state are transformed into the

virtual state.

Simulation and experiment

To highlight the superiority of the method proposed in this

article, the DMPs are used as comparative verification. In

the following, parameters setting are presented as Table 1.

Ti et al. 7



ET-DMPs: Euclidean transformation based DMPs;
DMPs: dynamical movement primitives

Simulation

Verification of ET-DMPs. To verify ET-DMPs can imitate

complex trajectories, the letters G, P, R, and W in the

alphabet data set (https://gitlab.idiap.ch/rli/pbdlib-matlab/

) are selected as demonstration. The simulation environ-

ment is built in Python. To reflect the adaptability of ET-

DMPs to any initial states, two points are randomly

selected from each quadrant of the goal state as the general-

ized initial state in simulation. The position of selected

points is illustrated in Table 2, and these test points are

going through all the quadrants.

The whole verification process can be divided into four

steps. Firstly, according to the data set, an original DMPs

model, which encodes the characteristic of demonstration,

is trained. Secondly, the relations between initial and goal

points are extracted from data set. Then the relation of

current states is compared with the demonstration and use

Euclidean Transformation according to different space

principles mentioned in Figure 3 to convert current state

to virtual situation. Finally, the generalized movement is

reversed back to real situation. Simulation results are

shown in Figure 5, where the star and the ring in each

subfigure individually represent the initial state and goal

state. The first and second rows individually represent tra-

jectories generated by ET-DMPs and DMPs. Original

DMPs have a good performance while approaching to the

goal, but at the beginning of the trajectory, they have a

terrible tracking performance. In contrast, the trajectories

generated by ET-DMPs have a perfect imitation of shape

while retaining the intrinsic characteristic of the demon-

stration. We can conclude from the results that if the gen-

eralized initial state is in the same quadrant as that of

demonstration, trajectories generated from ET-DMPs and

DMPs could all maintain the shape of the letters. However,

if the initial state is in different quadrants, the trajectories

generalized by DMPs deviated terribly from the shape of

demonstration while only ET-DMPs could greatly maintain

the shape of the letters.

Then, we generalize the movement represented in the

polar coordinate system, as Figure 6 shows. The first row

shows the trajectories generalized by DMPs in the polar

coordinate system. The last row plot shows two types and

colors of lines, where the blue- and red-dashed lines are the

demonstration trajectories of radius and angle, blue and red

solid lines are the generalized trajectory of radius and angle

in the polar coordinate. We can find that the movement

generalized in the polar coordinate still cannot retain the

features of the demonstration. Meanwhile, it has the same

problem as the movement generalized in Cartesian coordi-

nate, where we can conclude from the trajectories exhibited

in the last row. When the initial state is far from the

Table 2. The initial and target positions in the global coordinate system.

Relative quadrant Letter G Letter P Letter R Letter W

I [5.80, 4.25] [3.40, 3.10] [14.40, �2.00] [16.20, 15.25]
[2.80, 1.25] [5.00, �3.15] [13.20, �3.00] [13.80, 15.10]

II [�3.40, 3.10] [�4.20, 4.25] [�5.80, �1.25] [�5.80, 10.25]
[�5.00, 3.15] [�7.80, 5.10] [0.50, 3.25] [�6.30, 9.25]

III [�8.80, �7.25] [�5.80, �6.25] [�3.80, �12.25] [�3.80, 2.25]
[�5.00, �5.25] [�4.80, �3.25] [0.00, �14.25] [0.00, 0.25]

IV [4.20, �2.25] [3.80, �7.25] [16.20, �10.25] [19.40, 0.00]
[7.80, �5.10] [5.00, �5.25] [13.80, �11.10] [18.50, �3.15]

Goal Position [0.11, �0.51] [�3.79, 0.16] [7.18, �9.15] [9.61, 6.83]

Table 1. The experimental parameters setting of ET-DMPs and
DMPs.

ET-DMPs/DMPs parameters K D t
Num. of basis

function

Value 156.25 25 1 100

Figure 5. Comparison of the generalized trajectories of ET-DMPs and DMPs in 2D space. ET-DMPs: Euclidean transformation based
DMPs; DMPs: dynamical movement primitives; 2D: two-dimensional.
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demonstration, it has to reach the same state as soon as

possible. In addition, in the letter G writing task, we can

find the problem of crossing between 0 and 2p. The angle is

almost 0 at the end of the demonstration, but it changes

from 0 to 2p as shown by the red-dashed line. This problem

will have an effect on the generalized movement, as shown

by the red solid line, where the end of the motion begins to

fluctuate circled by the green-dashed ellipse. The same

problem will appear in the spherical coordinate in 3D

space. In general, the movement generalized by the DMPs

in polar coordinate cannot give good results as we expect.

Verification of ET-DMPs with obstacle avoidance. We verify the

obstacle avoidance based on ET-DMPs using the same

demonstration data in the section “Verification of ET-

DMPs,” namely, the trajectories of four kinds of letters.

To test the obstacle avoidance of this method, single and

multiple obstacles are added to disturb the current move-

ment in the process of generalization. The position of

obstacles is limited to the vicinity of expected trajectory

to highlight their interference effect.

The solid line and the dotted line in Figure 7 are the

generalized trajectories with and without obstacles,

Figure 6. Generalized trajectories of DMPs in polar coordinate system. DMPs: dynamical movement primitives.

Figure 7. Trajectories generalized from ET-DMPs in single obstacle avoidance task. ET-DMPs: Euclidean transformation based
dynamical movement primitives.
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respectively. The whole process is almost the same as that

in the section “Verification of ET-DMPs” except that

obstacle transformation is added. The symbol “þ” repre-

sents the obstacle. It can be proved that the trajectories

obtained by ET-DMPs combined with obstacles informa-

tion using Eq. (23), not only retains the shape of the demon-

stration but also avoids obstacles successfully. As shown in

Figure 8, with multiple obstacles, the resultant force of two

obstacles in some region makes the track deviate greatly,

but the overall shape of movement can still meet the

requirements of trajectory imitation.

Experiment

We evaluate the proposed method in several daily tasks.

Firstly, in the writing task, we show that the validity of the

ET-DMPs imitating the human writing trajectory with

obstacle avoidance ability. Then, we show that the ET-

DMPs could also imitate the periodic movement in the

wiping whiteboard task. In 3D space, the robot learns to

stir the mixture. The experiment environment is set as Fig-

ure 8. We select UR10 robot and the vision equipment

RealSense D435 camera embedded in the robot system to

detect goal and obstacles during the generalization process.

The operation system is selected as Ubuntu 18.04 with ROS

Melodic. The setting of PC is CPU i7-10750 H 2.60 GHz

and GPU RTX-2060.

Verification of ET-DMPs in writing task. For simplifying the

demonstration process, we design a 2D simulation software

to record the human writing behavior as shown in Figure 10

and then we scale the sampled demonstration data to proper

size. We select two points in each quadrant as the robot

initial state randomly as Figure 11(a) shown. We compare

the writing letters G, P, R, and W trajectories generalized

by the methods of ET-DMPs and DMPs. The whole process

of our method has been mentioned in the section

“Verification of ET-DMPs” and the data set is obtained

from human demonstration. In Figure 12, we can see that

the experiment results are not greatly different from simu-

lation results. However, the letters are well imitated by ET-

DMPs no matter the initial state is in which quadrants, so

the proposed method has the imitation invariance of vary-

ing relative quadrants of the initial and goal states.

For quantifying the similarity of the imitation, we intro-

duce the similarity evaluation method, which has been

mentioned in the section “The principle of Euclidean trans-

formation based DMPs” of trajectories. We show the mean

and variance of the imitation error along the trajectories

generalized from different quadrants in Figure 13; we can

see that when relation between initial and goal states is the

Figure 8. Trajectories generalized from ET-DMPs in multiple obstacle avoidance tasks. ET-DMPs: Euclidean transformation based
dynamical movement primitives.
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same as demonstration, the imitation error is the smallest

among other cases. Besides, the evaluation indicators of

ET-DMPs are smaller than DMPs in all conditions.

Verification of ET-DMPs in wiping whiteboard task. We design a

task to verify that the proposed method could also imitate

the periodic movement like wiping the whiteboard. Wiping

whiteboard is a representative example because it involves

the periodic motion. For the convenience of human demon-

stration, we use the same software as mentioned above to

record the wiping trajectory as Figure 10 shown. As

Figure 11(b) shows, firstly, we draw the handwriting to

be wiped randomly in four quadrants and then select the

edge of the handwriting to be the initial wiping state while

the goal state is set as the origin of the coordinate. We can

conclude from Figures 14 and 15 that the trajectories gen-

eralized by DMPs (blue-dotted line) reached beyond the

wiping area so that some parts of the handwriting cannot

be wiped cleanly. However, when employing ET-DMPs,

the wiping movement is limited strictly in the handwriting

area as the green rectangle shown in Figure 11(b). There-

fore, with the ET-DMPs, the robot can effectively complete

the wiping task as well as get an excellent result.

Verification of ET-DMPs with obstacle avoidance in writing task.
To test the performance of ET-DMPs in obstacle avoidance

Figure 10. Demonstration software.

Figure 9. The setting of the 2D and 3D space task. 2D: two-dimensional; 3D: three-dimensional.
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task, we add two obstacles limited to the vicinity of the

expected trajectory as Figure 11(c) shown. In Figure 16, we

select two letters G and R. which are representative trajec-

tories containing linear and curved motion. The first row

shows the writing trajectories with obstacle disturbance,

and on the contrary, the second row shows the trajectories

generalized without obstacles. As we can see, in the case of

interference from two obstacles, the generalized motion has

been blocked to track the expected motion, but the writing

trajectories generalized by ET-DMPs can still retain the

general shape feature of demonstration and avoid multiple

obstacles successfully.

Figure 12. The writing trajectories of letter G, P, R, and W generalized by ET-DMPs and DMPs in four quadrants. ET-DMPs: Euclidean
transformation based DMPs; DMPs: dynamical movement primitives.

Figure 11. (a) to (c) Experiment initial states setting of 2D space task. 2D: two-dimensional.
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Figure 13. Imitation evaluation indicators of ET-DMPs and DMPs. ET-DMPs: Euclidean transformation based DMPs; DMPs: dynamical
movement primitives.

Figure 14. Snapshots of wiping whiteboard process using ET-DMPs. ET-DMPs: Euclidean transformation based dynamical movement
primitives.
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Verification of ET-DMPs in stirring task. We employ ET-DMPs

to accomplish tasks in 3D space, for example, transferring

motions of stirring in bottle to robots to learn, we record the

stirring trajectory through Kinesthetic teaching. The setting

of the stirring task is shown in Figure 17. We select four

positions close to the top of bottle in four quadrants as the

initial states. Specifically, we still employ two modes men-

tioned above to manipulate in 3D space. In mode 1, the

inclination of the central axis of bottle is considered into the

rotation, which is determined by the direction from initial

states to goal. In mode 2, movement along the z-axis is

generalized using Eq. (7) independent of the other two

dimensions while along the x-axis and y-axis movement

is treated as the planar rotation using Eq. (8)

As shown in Figure 18, we compare the trajectories

generalized by ET-DMPs (modes 1 and 2) and DMPs.

We can conclude that when employing ET-DMPs, the stir-

ring trajectories can always meet the requirements of the
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Figure 15. Wiping trajectories generalized by ET-DMPs and
DMPs. ET-DMPs: Euclidean transformation based DMPs; DMPs:
dynamical movement primitives.

Figure 16. Writing letters G and R by ET-DMPs with obstacle avoidance. ET-DMPs: Euclidean transformation based dynamical
movement primitives.

Figure 17. Initial states setting in stirring task.
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new task, either in mode 1 or in mode 2. However, in

contrast to ET-DMPs, the shape feature nearly collapses

when employing DMPs, for it only retains the independent

feature of each dimension consistent with demonstration;

meanwhile, the relation between the initial and goal states

in different tasks are not taken into account in DMPs so it

fails to generalize to other situations.

Discussion

This article introduces the Euclidean transformation matrix

to modify the generalized part of DMPs. However, it is

more than just rotation transformation. The generalization

process of DMP is based on the proper relation state

between the initial and goal. In different dimensions task,

we discover many details about the transformation from

this relation, such as 3D space, we divide it into two modes

that meet the different task requirements. The ET-DMPs is

a version of DMPs combined with such transformation,

which solves the imitation problem caused by changes in

the initial state.

Although there are important discoveries revealed by

studies, it still has some limitations. The basic idea of

ET-DMPs is based on offline movement generalization,

so the relationship extracted from demonstration is fixed.

If an unpredictable external disturbance during the general-

ized movement corrupts the initial relationship that we

have extracted, the original ET-DMPs cannot immediately

adjust the motion to compensate for the disturbance. In

addition, our method does not consider the orientation gen-

eralization. The relationship of orientation maybe not as

easy as position to obtained.

Our method can solve most situation problems as the

experiment shown and it has been verified by adequate

evaluation. However, maybe it is not the best way to solve

this problem. In future research, we will try to employ this

kind of transformation to the forcing term of DMPs, which

may be the fundamental solution to the problem presented

in this article. Then, we will try to optimize our method by

introducing the real-time relationship between the current

goal and robot state, which enables ET-DMPs to cope with

application scenarios that change in real time. To imitate

human behavior more completely, we will take the orienta-

tion transformation into account and plan to construct the

relation model in the Riemannian manifold for the orienta-

tion part.

Conclusion

In this article, we proposed an ET-DMPs method to solve

the problem that DMPs method cannot retain the shape

feature of demonstration when the initial task state changes.

It consists of Euclidean transformation module and gener-

alization module. The first module is used to transform the

robot state between the virtual situation and the real situa-

tion. The second module is used to imitate and generalize

the movement. We tested our method in simulation and

experiment. The complex letters such as G, P, R, and W

are selected as database of demonstration in writing task

and we demonstrated the wiping movement through a soft-

ware designed for easily transferring the movement to the

robot; finally, we also test our method in 3D space through

stirring task. The results show that ET-DMPs retain the

relative scope of the attractor field, which retains the shape

feature of demonstration. Besides, the advantages of DMPs

Demonstration DMPs ET-DMPs Goal InitialDemonstration DMPs ET-DMPs Goal InitialDemonstrationDemonstration DMPsDMPs ETET--DMPsDMPs GoalGoal InitialInitialDemonstration DMPs ET-DMPs Goal Initial

Figure 18. Stirring task trajectories generalized by ET-DMPs (mode 1/2) and DMPs. ET-DMPs: Euclidean transformation based
DMPs; DMPs: dynamical movement primitives.
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are preserved in ET-DMPs. In addition, the Euclidean

transformation of obstacles endows robots with the ability

to avoid obstacles in more complex environment, and we

employed this method in writing task to verify its validity.

The results prove that ET-DMPs combined with obstacle

transformation is capable of obstacle avoidance while

retaining the characteristics of demonstration.
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